
 

 

 

 

 

 

 

 

 

 

CORSAIRE WHITE PAPER 

BREAKING THE BANK 

VULNERABILITIES IN NUMERIC PROCESSING WITHIN FINANCIAL APPLICATIONS 

 

 

 

 
 

 

 

Project Reference 
080715 Corsaire Whitepaper - Breaking the Bank - 
Numeric Processing.doc 

Authors Adam Boulton, Stephen De Vries, Kevin O’Reilly 

Date 15 July 2008 

Distribution General release 

Copyright © 2008 Corsaire Limited. All Rights Reserved. 

 



 

Breaking the Bank 
 

 

 
 

Page 2 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Executive Summary

Attackers will go to extraordinary lengths to 

compromise a financial application; the spoils are 

just too irresistible. So unsurprisingly these 

applications have higher requirements for data 

confidentiality, transaction integrity and service 

availability than many other web applications. 

Brand damage, loss of client and corporate data, 

fraudulent transactions and loss of revenue are 

just some of the direct local impacts associated a 

security breach of a financial application. 

“Security compromise of a financial 

application has far-reaching and serious 

implications for the business” 

This is, however, well trodden ground in the 

security arena and the purpose of this paper is not 

to play on the fears associated with the threats 

facing financial applications.   

Clearly, a compromise of the integrity of financial 

data can have severe repercussions. Aside from 

the direct impact from deliberate fraud, 

organisations can also find themselves subject to 

fines and sanctions issued by bodies such as the 

UK’s Financial Services Authority (FSA) and the 

Gambling Commission, or Australia’s Australian 

Prudential Regulation Authority (APRA); along 

with potential prison sentences associated with 

breaches of Sarbanes Oxley. 

“The accuracy and integrity of numeric 

calculations is of the utmost importance 

for applications dealing with financial 

data, but is frequently overlooked during 

security assessments” 

The inappropriate handling of numeric 

calculations may be for many reasons; some 

assessment providers are simply unaware of the 

intrinsic programmatic risks associated with 

numerical processing, others are focussed on 

more easily identifiable issues associated with 

applications in general.  The continued 

observation of such flaws by Corsaire’s 

consultants suggests that there is still a lack of 

awareness of these issues, and they remain 

misunderstood and overlooked both from 

development and security assessment 

perspectives. 

There are, of course, many other security threats 

facing financial applications including areas such 

as strong authentication, data validation and 

accountability, for example. 

This paper focuses on technical issues associated 

with common programming languages and API’s 

that present a security threat, and how to mitigate 

the associated risks. 

While banking, trading, e-commerce and 

electronic gaming applications are likely to be 

some of the most effected by such flaws, these 

issues are applicable to any application where 

critical numeric calculations are made and relied 

upon. 



 

Breaking the Bank 
 

 

 
 

Page 3 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Table of Contents 

VULNERABILITIES IN NUMERIC PROCESSING WITHIN FINANCIAL APPLICATIONS .... 1 

EXECUTIVE SUMMARY ...................................................................................................... 2 

TABLE OF CONTENTS ....................................................................................................... 3 

OVERVIEW.......................................................................................................................... 4 

TECHNICAL VULNERABILITIES......................................................................................... 5 

Introduction......................................................................................................................... 5 

Use of Inappropriate Data Types........................................................................................ 5 

Converting between Floating Points.................................................................................. 8 

Bypassing Validation through Exponential Notation ........................................................ 9 

Bypassing Validation through Reserved Words ............................................................. 10 

Bypassing Validation through Overflows and Underflows............................................. 12 

Bypassing Validation through API misuse...................................................................... 13 

Object Equality.................................................................................................................. 14 

Rounding Errors in Currency Conversion....................................................................... 17 

CONCLUSIONS ................................................................................................................. 19 

REFERENCES................................................................................................................... 19 

ACKNOWLEDGEMENTS................................................................................................... 19 

About The Authors ........................................................................................................... 19 

About Corsaire.................................................................................................................. 20 

 



 

Breaking the Bank 
 

 

 
 

Page 4 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Overview 

This paper draws attention to how the use of common programming APIs and practices could lead to flaws in 

the processing of numeric data, which could allow attackers to manipulate the outcome of transactions or 

otherwise interfere with the accuracy of calculations. 

It discusses the technical vulnerabilities typically observed in both the validation and processing of numeric 

data that could expose an organisation to unmanaged risk.  It is intended for a technically literate audience 

involved in developing or testing financial applications, and to provide technical insight to those responsible 

for their management.  The vulnerabilities are presented with source code examples, suggestions on how to 

identify the flaws during the testing phases and recommendations for mitigating the risk. 



 

Breaking the Bank 
 

 

 
 

Page 5 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Technical Vulnerabilities 

Introduction 

The technical vulnerabilities discussed within this section of the document are based on real world scenarios 

observed by Corsaire’s consultants.  These vulnerabilities can lead to significant discrepancies relating to the 

processing and delivery of financial data, which can have a major impact on the organisation. 

All Java code examples were compiled using the Sun JDK 6. The .NET code examples were compiled under 

version 3.0 of the .NET framework.  Additional examples are provided in VBScript, where appropriate. 

Use of Inappropriate Data Types 

The float and double data types are based on the Standard for Binary Floating-Point Arithmetic (IEEE 

754)/Binary floating-point arithmetic for microprocessor systems (IEC 60559:1989).  This standard has 

acknowledged issues and short-comings relating to rounding errors, comparisons and the overall accuracy 

of results when performing floating point arithmetic. Floats and doubles are designed for scientific and 

engineering calculations, where some small loss of accuracy is acceptable.  Their use in financial 

applications should be avoided as they result in approximations instead of exact results.  

Java 

For example, consider the following Java code: 

System.out.println(2.00 - 1.10); 

While it would be reasonable to expect the output to be “0.9”, it is actually “0.8999999999999999”. It is not 

possible to represent fractions exactly, as the IEEE 754 standard explains; floats and doubles are stored 

internally as 32 and 64-bit numbers, with inherent limits in the accuracies they can store. For example, it is 

impossible to represent any negative power of 10 as a float or double exactly, illustrated here when 

performing a calculation with 0.1: 

double fraction = 0; 
 
for (int i=0; i<10; i++) 
{ 
   fraction += 0.1; 
   System.out.println(fraction); 
} 

Produces: 

0.1 
0.2 
0.30000000000000004 
0.4 
0.5 
0.6 



 

Breaking the Bank 
 

 

 
 

Page 6 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

0.7 
0.7999999999999999 
0.8999999999999999 
0.9999999999999999 

Rounding will continue to cause further inaccuracies as can be seen in the following example: 

double d = 29.0 * 0.01; 
System.out.println(d); 
System.out.println(d * 100); //29.0 would be expected 
System.out.println((int) (d * 100)); //Cast to integer 

This produces the output: 

0.29 
28.999999999999996 
28 

In the cast operation, the mantissa is simply stripped without consideration for the overall result.   

Clearly, various mathematical operations conducted on the floats and doubles resulted in notable variations 

and increasingly significant errors that would affect the integrity of a financial application. 

C# 

In C# floating points use 128 bits to represent values within the range 1E-28 to 7.9E+28. As can be seen 

throughout the paper, floating point arithmetic suffers from serious rounding errors when dealing with 

decimal values.  

A similar effect as the above Java example can be observed via the following C# code:  

int i; 
float fraction = 10000; 
 
for (i = 0; i < 101; i++) 
{ 
    fraction = fraction+0.1f; 
    Console.WriteLine(fraction.ToString("N2")); 
}        

This produces the following (truncated) output: 

10,000.10 
10,000.20 
10,000.30 
10,000.40 
... 
10,009.76 
10,009.86 
10,009.96 
10,010.06 

After one hundred iterations, a significant error can be seen.  



 

Breaking the Bank 
 

 

 
 

Page 7 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

VBScript 

In VBScript, this situation (which is inherent to all floating point numbers) can be masked by a feature of the 

VBScript engine: 

print(919.9999999999999); 
print(920.0000000000001); 

Produces the output: 

920 
920 

Here the VBScript interpreter assumes that the input values have already suffered from floating point 

rounding errors, and rounds them in an attempt to correct this phenomenon.  However, as we can see this 

correction is performed even when no error has actually occurred – this could lead to erroneous results. 

Testing 

If a site permits a user the ability to manipulate decimal values then it can be tested by performing a 

calculation which would result in a rounding error, for example, in a banking application perform the following 

tests:  

1. Modify an account so that it only has 2.00 as the available balance. 

2. Transfer 1.10 from the account. 

If the balance is 0.8999999999999999 then the application is prone to serious miscalculations and is a likely 

indication that the IEEE 754 standard has been used for monetary calculations. 

Recommendation 

When dealing with monetary values in Java and .NET languages, it is recommended that the available 

classes that allow arbitrary precision, and their associated methods, be used for calculations instead of the 

standard mathematical operators.  For Java, the java.math.BigDecimal class is available, while the 

System.Decimal class is available for C#.. However, these classes also have their peculiarities which should 

be taken into account (see Converting between Floating Points and Object Equality).  

A combination of data types may be required in a financial application, for example, if a language supports 

primitives then their use may be considered when optimal performance is essential and the use of the 

BigDecimal class to avoid the overhead of manually managing the decimal point. In either solution, thorough 

testing should be performed to ensure that calculations provide the correct and expected result. 



 

Breaking the Bank 
 

 

 
 

Page 8 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Converting between Floating Points 

Java 

There are also a number of pitfalls to be aware of when using floating points in combination with the 

BigDecimal class.  BigDecimal has several factory methods and overloaded constructors which take floating-

points as an argument; these could cause approximation errors.  Depending on the value passed into the 

constructor or factory methods the result may not be as expected due to IEEE 754, as discussed above.  

For example, consider the following Java code: 

double d = 1; 
for(int i=0; i<10; i++) 
{ 
 d += 1.1; 
 BigDecimal bd = new BigDecimal(d); 
 System.out.println(bd); 
} 

Running the code results in the following output: 

2.1 
3.2 
4.300000000000001 
5.4 
6.5 
7.6 
8.7 
9.799999999999999 
10.899999999999999 
11.999999999999998 

C# 

The same is also true for C#: The Decimal class can suffer from similar inaccuracies when constructing a 

Decimal using floating point values: 

float f = 1; 
 
for (int i = 0; i < 10; i++) 
{ 
    f += 1.1F; 
    decimal dec = new decimal(f); 
    Console.WriteLine(dec.ToString("N6")); 
} 

This gives as output: 

2.100000 
3.200000 
4.300000 
5.400000 
6.500000 
7.599999 
8.700000 
9.800000 
10.900000 
12.000000 



 

Breaking the Bank 
 

 

 
 

Page 9 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Testing 

During a security code review, check for the use of the BigDecimal or Decimal class which is constructed 

using floating point values and ensure adequate validation has been performed. 

During a black box assessment, attempt to set a value to “Infinity” or “NaN”. While these are valid values for 

the Double class they will cause runtime exceptions (NumberFormatException in Java and FormatException 

in C#) if used to construct a BigDecimal / Decimal, which can therefore cause the currently executing thread 

to crash if not handled correctly. 

Recommendation 

A BigDecimal should be constructed using a String value and should be validated beforehand, as a String, in 

order to prevent runtime exceptions. Using a floating point to instantiate a BigDecimal should be avoided. 

Floating points also have a limit of 16 significant digits which results in size restrictions since BigDecimal 

supports more. One of the most important reasons for using BigDecimal is that it gives developers complete 

control over rounding and scale manipulation. 

Care should be taken when using built in numeric validation functions as these might permit non-numeric 

data to be accepted when it should be rejected. 

Bypassing Validation through Exponential Notation 

Floating point values can often be expressed in exponential notation.  If validation is performed on String 

values before they are converted to floating points, then exponential notation could be used to bypass the 

validation facilities.   

The following VBScript code illustrates this vulnerability: 

Dim value As String 
Dim number As Double 
value = "9E-4" 
If (IsNumeric(value)) Then 
   'Check if the number contains at most 2 decimal places 
   If ((InStr(value, ".") = 0) Or (Len(value) - InStr(value, ".") <= 2)) Then 
      number = CDbl(value) 
      MsgBox("The value contains at most 2 decimal points.  Value=" & number) 
   End If 
End If 

Produces the output: 

The value contains at most 2 decimal points.  Value=0.0009 

Exponential notation could also be used to bypass length restrictions, consider the following VBScript: 

String value = new String("9E+6"); 
Float number; 
number = Float.valueOf(value); 



 

Breaking the Bank 
 

 

 
 

Page 10 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

if (value.length() <= 4) { 
   System.out.println("Value is less than 4 digits long. Value="+number); 
} 

Produces the output: 

Value is less than 4 digits long.  Value=9000000.0 

Both Java and C# have methods to convert String values in exponential notation to the equivalent floating 

point values as shown in the VBScript example above. 

Testing 

Test the application for support of exponential notation. For example, by attempting to bypass limits using 

values such as: 

• 9E+1 

• 9E1 

• 9E-1 

• 0.99e-4 

• 0.99E+6 

Recommendation 

Validate string values using strict rules to ensure that only digits, and if required, the decimal point is 

permitted.  Verify that the validation was correctly performed by re-validating the numeric value after it is 

converted to a numeric data type. 

Bypassing Validation through Reserved Words 

There are a number of reserved String words which can be recognized as legitimate numeric values by a 

language.  These values can be used to bypass validation and cause serious data corruption issues.  In 

Java and C# the reserved values are: 

• NaN 

• Infinity 

• -NaN 

• -Infinity 

Java 

Consider the following Java code: 

String value="NaN"; 
Float number, balance,result; 
balance = 10.0F; 



 

Breaking the Bank 
 

 

 
 

Page 11 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

try { 
 number = Float.valueOf(value); 
 result = balance - number; 
 System.out.println(result+” is a valid number.”); 
} catch (NumberFormatException e) { 
 System.out.println("The value: "+value+" is not a valid number."); 
} 

This produces the output:  

NaN is a valid number. 

“NaN” is a Java reserved String which stands for Not a Number, but is itself regarded as a valid number by 

the language.  A NumberFormatException would be thrown for other strings which are not regarded as 

numbers.   

C# 

The following C# code illustrates the same principle: 

String value = "-Infinity"; 
double number, balance; 
balance = 10.0F; 
try 
{ 
   number = Convert.ToDouble(value); 
   double result = balance - number; 
   Console.WriteLine("Results=" + result); 
   Console.ReadLine(); 
} 
catch (FormatException fe) 
{ 
   Console.WriteLine(value + " is not a number."); 
}   

As the code illustrates, these values can take part in numeric calculations, the results of which could skew 

financial calculations, for example: 

• 10.0F – (-Infinity) = Infinity 

• 10.0F / (-Infinity) = -0.0 

• Any calculation involving “NaN” produces “NaN” as a result. 

Testing 

Test all of the listed reserved words in numeric fields.  If an exception from a casting operation is the only 

validation performed on a value, then this validation could likely be bypassed and invalid numeric data 

entered. 



 

Breaking the Bank 
 

 

 
 

Page 12 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Recommendation 

Validate values as Strings before they are converted to numeric data types using a strict white list.  

Additionally, re-validate the numeric values after conversion and take care when using built in numeric 

validation functions. 

Bypassing Validation through Overflows and Underflows 

Numeric overflows occur when a value is too large for the number of bytes allocated for the type. For 

example, consider the primitive int data type. This is a 32-bit signed integer. An int therefore has a minimum 

value of -2
31 
and a maximum value of 2

31
-1. In Java and C#, if an integer value reaches the maximum value 

and is incremented, an overflow occurs which causes the value to ’roll-over’ into the smallest minimum value; 

no runtime exceptions are thrown when the overflow occurs.  The overflow condition exists for all the 

primitive data types and primitive wrapper classes in Java as well as the corresponding C# classes. 

Java 

The following Java code demonstrates a numeric overflow: 

Integer intOverflow = Integer.MAX_VALUE + 1; 
System.out.println(“intOverflow = ” + intOverflow); 
  
Double positiveInfinity = Double.MAX_VALUE + Double.MAX_VALUE; 
System.out.println(“doubleOverflow = ” + positiveInfinity); 
 
Float negativeInfinity = -Float.MAX_VALUE / 0; 
System.out.println(“floatOverflow = ” + negativeInfinity); 

This produces the output: 

intOverflow = -2147483648 
doubleOverflow = Infinity 
floatOverflow = -Infinity 

C# 

Similarly in C#: 

Int32 intOverflow = Int32.MaxValue + 1; 
Console.WriteLine(“intOverflow = ” + intOverflow); 
 
Double positiveInfinity = Double.MaxValue + Double.MaxValue; 
Console.WriteLine(“doubleOverflow = ” + positiveInfinity); 
 
Float negativeInfinity = -Float.MaxValue / 0; 
Console.WriteLine(“floatOverflow = ” + negativeInfinity); 

This produces the output: 

intOverflow = -2147483648 
doubleOverflow = Infinity 
floatOverflow = -Infinity 



 

Breaking the Bank 
 

 

 
 

Page 13 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Testing 

If a site permits the ability to manipulate numeric values, such as a shopping cart feature, it can be tested as 

follows: 

1. Add 214748367 items in the shopping cart.  

2. Then add one more of the same item to cause an overflow.  

If the shopping cart registers as having “-2147483648” quantity it is possible to infer that the quantity is being 

stored using a 32-bit value of the Integer / Int32 data type and that no validation has been performed on the 

result. 

Recommendation 

If a language supports unsigned values (such as the UInt32 in C#) then these data types should be used 

when expecting only positive values, such as an online shopping cart. 

Validation should be performed thoroughly on values prior to them being used in a calculation as well as the 

end result being validated to avoid results which may have overflow or underflow. 

Bypassing Validation through API misuse 

Applications sometimes perform validation on numeric data, before the data has been converted from a 

string data type.  This can lead to unexpected errors, and in some cases allow attackers to bypass this 

validation. 

VBScript: Implicit conversion 

The VBScript “isDigit()” function expects a character argument and returns a Boolean based on whether the 

character is a digit or not.  If the argument is a String, then it is cast as a character by taking the first 

character in the string.  No warnings or error messages are generated during this cast.  Inadvertent use of 

strings instead of characters could allow non-numeric values to bypass validation routines. 

This means that the results of the following calls are all true: 

Char.iSDigit(“2E-4”) 
Char.isDigit(“2hello”) 

Depending on how the validation is performed, this could lead to non-numeric data finding its way into the 

business logic, which could lead to unpredictable results and failure of the application or applications that 

depend on the data. 



 

Breaking the Bank 
 

 

 
 

Page 14 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

VBScript: isNumeric 

The “isNumeric()” functions is used to determine whether a given string value is numeric or not.  But this 

function will return true for a wide range of characters which are not necessarily valid digits.  This can be 

used to bypass some forms of validation, for example: 

Dim value As String 
Dim number As Double 
value = "$-12" 
If (IsNumeric(value)) Then 
  number = CDbl(value) 
  'Checks if the first character is a negative 
  If InStr(value, "-") = 1 Then 
      MsgBox("Negative.  Value=" & number) 
  Else 
      MsgBox("Not a negative.  Value=" & number) 
   End If 
End If 

This produces the output: 

Not a negative.  Value=-12 

Testing 

Insert a dollar sign in front of negative numeric values to attempt to bypass negative value checks.  Where 

the number of decimal places is being restricted through validation, attempt to enter the values as 

exponential notation. 

Recommendation 

Avoid using the “isNumeric()” function to perform validation; instead, perform stronger and tighter validation 

through “isDigit()” and thorough String validation.  When using “isDigit()”, ensure that the parameter is a char 

value, and not a String.  In addition to String validation it is also recommended that numeric values are 

validated after they have been cast as numerics. 

Object Equality 

Using incorrect methods to determine value and object equality can result in inaccurate results and 

inconsistent business logic.  

Java 

Most classes have an overridden “equals()” method (derived from Object) which is used to compare values 

between objects. However, when dealing with monetary values and using the BigDecimal class the 

“compareTo()” method should be used. The following code illustrates the difference: 

BigDecimal bigDec = new BigDecimal("100.0"); 
BigDecimal bigDec2 = new BigDecimal("100.00"); 
System.out.println(bigDec.equals(bigDec2)); 
System.out.println(bigDec.compareTo(bigDec2)); 



 

Breaking the Bank 
 

 

 
 

Page 15 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

The output shows that there is a very distinct difference: 

false 
0 

The “0” returned by “compareTo()” indicates that the values are equal – even though they have a different 

scale they are equivalent in value. In order for the “equals” to return true the value and scale must be equal.  

C# 

The following C# code indicates how the “equals()”, “compare()” and “compareTo()” methods behave 

differently when compared to the equivalent Java implementation above. Functionally there is very little 

difference between these methods as the “compare()” and “compareTo()” methods are merely wrappers 

around the “equals()” method. All of these methods are used to compare the values between instances of 

Decimal objects. However, the scale is not taken into consideration when determining the equivalence: 

Decimal bigDec = Decimal.Parse("100.0");  
Decimal bigDec2 = Decimal.Parse("100.00"); 
Console.WriteLine(Decimal.Equals(bigDec, bigDec2)); 
Console.WriteLine(Decimal.Compare(bigDec,bigDec2)); 
Console.WriteLine(bigDec.CompareTo(bigDec2)); 

Results in the following output: 

True 
0 
0 

Caching in Java 

Since Java 5, primitive wrapper class caching was introduced which may cause further mistakes when 

comparing values. The Integer, Byte, Short and Long classes contain nested inner classes which create 256 

instances of the instantiated Object using values in the range of -128 to 127. This can cause confusion and 

lead to potential errors when using the “==” operator. While “==” is used to compare primitive values it should 

never be used when attempting to compare the values of the wrapper classes as the values are not unboxed 

and instead compare object equality. The following Java code demonstrates the caching mechanism: 

Integer a = 5, b = 5; 
Integer c = 200, d = 200; 
 
System.out.println(a == b); 
System.out.println(c == d); 
 
System.out.println(a.equals(b)); 
System.out.println(c.equals(d)); 

Produces the output: 

true 
false 
true 
true 



 

Breaking the Bank 
 

 

 
 

Page 16 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

The first condition returns “true” because using the “==” operator will always check Object equality and not 

value, unless comparing primitives. Object “a” and Object “b” will point to the same object on heap. However, 

for values which lie outside the caching range, a new object is created on the heap which causes the second 

condition to result in false despite the Integer Objects containing the same value. 

BigDecimal also uses caching but creates the cache using a slightly different mechanism. Instead of using a 

nested inner class, the caching is pre-defined in a static array and only covers 11 numbers, 0 to 10.  

Further issues are introduced when using BigDecimal in SortedMap or SortedSet Java classes. Since 

BigDecimal's natural ordering is inconsistent with “equals”, great care should be taken if BigDecimal is to be 

used as a key within these classes. 

Caching in C# 

This type of caching does not exist in C# as can be seen from the equivalent code example: 

Int32 a = 5, b = 5; 
Int32 c = 200, d = 200; 
Console.WriteLine(a == b); 
Console.WriteLine(c == d); 
 
Console.WriteLine(a.Equals(b)); 
Console.WriteLine(c.Equals(d)); 

Produces the output: 

true 
true 
true 
true 

Testing 

During a white-box assessment the code should be checked to ensure the correct methods have been used 

to compare values. For example, in Java ensure that “equals()” has not been mistakenly used in place of 

“compareTo()”.  The code should also be checked to ensure that “==” has not been used to compare values. 

When conducting a black-box assessment, test operations where comparisons may have been used (such 

as when comparing balances or limits) by noting any differences in the application when handling values with 

one or two decimal places. For example, if the software states that a transaction must be 5GBP but 5.00GBP 

has been submitted and fails it may be possible to infer that the BigDecimal comparison is being done using 

the “equals()” method. 



 

Breaking the Bank 
 

 

 
 

Page 17 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Recommendation 

Never use the “==” operator to determine it two objects contain the same value, instead use the appropriate 

methods of the given class.  In Java’s BigDecimal, use the “compareTo()” method to compare two objects 

instead of using the “equals()” method. 

Rounding Errors in Currency Conversion 

Applications often have to express values with a fixed number of decimal places, and numbers that would 

normally occupy a greater number of decimal places must be rounded either up or down in order to fit. The 

round-to-nearest, ties away from zero rounding mode is the convention most commonly applied; where 0.4 is 

rounded down but 0.5, representing a ‘tie’ in distance from 0 and 1, is rounded up. This is perfectly adequate 

for most normal applications. However, within the arena of financial transactions, rounding up or down may 

lead to situations where users exploit the calculations for financial gain. 

The most common scenario where rounding of some sort can often not be avoided is when dealing with 

currency conversion. The exchange rate between two currencies is often expressed as a value with a large 

number of decimal places. In this scenario, rounding of some sort may simply be inevitable, yet care must 

still be paid as to how the conversion is implemented, to avoid scenarios where either money can be erased, 

or more worryingly for financial institutions, where money can be created by rounding values upwards. 

Although the largest amount of money that can be erased or created by rounding is the smallest unit of a 

given currency, if care is not paid to other factors such as the number of transactions permissible in a given 

time period, repeated transactions involving rounding can soon lead to situations where large quantities of 

money are involved.  

For example, given an exchange rate of 0.745 from Euros into Sterling, a Euro would result in 75 pence if 

rounding up: 

€1 * 0.745 = £0.75    (rounded to 2 decimal places) 

Thus one thousand repeated transfers like this would give £750. However moving this back into Euros in a 

single transfer with the same rate would give : 

£750 / 0.745 = €1006.71   (rounded to 2 decimal places) 

Thus €6.71 can be created by performing many small transactions that exploit the rounding in these 

calculations. 



 

Breaking the Bank 
 

 

 
 

Page 18 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Testing 

Testing for such issues involves ascertaining if the rounding convention used implements rounding up by 

performing a transaction with appropriately chosen numbers. For example, with an exchange rate of, say, 

2.03679 between Dollars and Sterling:  

 2 * 2.03679 =  4.07358 

Therefore:  

£0.20 * 2.03679 = $0.407   (to 3 decimal places) 

If when testing the application, a result of $0.41 is given, it is clear that rounding up has occurred. 

A key factor in practically exploiting these issues is that the application allows a user to easily perform many 

transactions using automated means (such as a script).  The protections implemented which prevent 

automated submission should be taken into account when evaluating the risk posed by this vulnerability. 

Recommendation 

A possible defence to such an attack would be the creation of a limit to the number of transactions a given 

user is allowed to perform in a given time frame. While not overly restrictive for legitimate customers, it would 

thwart large scale fraud by placing a small upper limit on the amount of money that might be created or lost 

based on manipulation of rounding.  Additionally, strategies to detect aberrant behaviour in relation to such 

transactions may also be advisable if not already in place within anti-fraud and other monitoring and analysis 

procedures.  This could be used to assist in the detection of slow attacks, which a determined attack may 

employ to avoid daily transaction limits. 

By simply implementing a system of commission for the institution, the issue is conveniently avoided 

altogether by reversing the small potential gain of a single transaction. If the functional specification of an 

application does not include a provision for a commission mechanism, to deal with this issue one might 

choose to always round down to avoid loss. However this might be dimly viewed by customers as it is they 

who thus lose on the transaction.  Rounding of values in favour of the organisation may raise legal concerns 

if not conducted in an appropriate manner.  Where necessary, seek clarification from the appropriate 

standards and legal bodies (e.g. regulators). 

A better method would be to quote different exchange rates depending on the direction of the transaction 

between two currencies that are both slightly adjusted to counteract rounding in favour of the institution. 

Whilst minimising any loss to the customer, this system leaves the customer free to decide against 

proceeding with the transaction by evaluating the fairness of the rates that are offered. 



 

Breaking the Bank 
 

 

 
 

Page 19 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Upon comparing the rates, the difference will appear minimal, but it should be clear from the outset that they 

fairly exclude situations where any user might make money out of the system. 

Conclusions 

Accurately processing numeric data is of paramount importance to organisations that depend on the 

accurate management of financial data.  Financial applications must be designed and implemented with 

accuracy and correctness in mind to avoid direct financial loss and to comply with relevant regulatory 

requirements.  Achieving this goal, however, can be problematic due to the way common programming 

languages deal with numeric data, especially floating point values.  This is of particular concern during the 

validation stage, where the application determines whether numeric data is valid or not.  The accuracy of 

rounding floating point values can also lead to exploitable vulnerabilities which attackers could use to 

manipulate transactions to return favourable outcomes. 

The risk posed by these vulnerabilities can be managed by understanding how to identify the issues and how 

to correctly use the applicable programming APIs. 

References 

SOX: What does it mean for UK companies? - http://www.continuitycentral.com/feature0203.htm  

UK Financial Services Authority http://www.fsa.gov.uk/pages/Library/Communication/PR/2007/021.shtml 

IEEE Standard for Floating-Point Arithmetic - http://grouper.ieee.org/groups/754/ 

Operational Risk in the FSA Handbook - http://fsahandbook.info/FSA/html/handbook/SYSC/13/7  

Acknowledgements 

This paper was written by Adam Boulton, Kevin O’Reilly and Stephen de Vries, with contributions from Glyn 

Geoghegan and David Ryan. 

About The Authors 

Adam Boulton is a Research Developer and Security Consultant for Corsaire. He has been involved in all 

aspects of the SDLC with a focus upon security. He graduated from Sheffield Hallam University with a 1st 

Class Software Engineering Degree and is also certified for secure code assessments. 

Adam’s past roles have included that of a Software Engineer for the Ministry of Defence and a Virus Analyst 

for Sophos. At both positions he was heavily involved in Software Development, Reverse Engineering and 



 

Breaking the Bank 
 

 

 
 

Page 20 of 20 
080715 corsaire whitepaper - breaking the bank - numeric processing.doc 
Copyright © 2008 Corsaire Limited.  
All Rights Reserved.   

Implementation. He loves challenges, especially when it comes to making code run fast, and finding 

simplicity and elegance in what looks like intricate chaos. 

Stephen de Vries is a Principal Consultant in Corsaire’s Security Assessment team. He has worked in IT 

Security since 1998, and has been programming in a commercial environment since 1997. He has spent the 

last eight years focused on Security Assessment and Audit at Corsaire, KPMG and ISS. He was also a 

contributing author and trainer on the ISS Ethical Hacking course. He is currently leading the OWASP Java 

Project and regularly presents on secure programming and testing. 

Stephen’s past roles have included that of a Security Consultant at a leading City of London Financial 

institution and also Security Engineer at SMC Electronic Commerce. At both positions he was involved in 

corporate security at many levels and was responsible for consulting on the paper security policies and 

procedures, conducting vulnerability assessments, designing, deploying and managing the security 

infrastructure of the organisation. 

Kevin O’Reilly is a Research Developer and Security Consultant for Corsaire. He has a background in 

malware analysis and security research which combines experience in reverse engineering and software 

development. He graduated from Oxford University with a Master’s degree in Physics. 

Kevin’s past roles have included a Research Studentship for the Nuclear and Astrophysics Laboratory in 

Oxford, and a position as Virus Researcher with Sophos. The former post had a particular emphasis on 

programming and mathematics, with the latter focussing on reverse engineering, malware analysis and 

security research. 

About Corsaire 

Corsaire are experts at securing information systems, consultancy and assessment. Through our 

commitment to excellence we provide a range services to help organisations protect their information assets 

and reduce corporate risk.  

Founded privately in the United Kingdom in 1997, we operate on an international basis with a presence 

across Europe, Africa and the Asia-Pacific rim. Our clients are diverse, ranging from government security 

agencies and large blue-chip FTSE, DAX, Fortune 500 profile organisations to smaller internet start-ups. 

Most have been drawn from banking, finance, telecommunications, insurance, legal, IT and retail sectors. 

They are experienced buyers, operating at the highest end of security and understand the differences 

between the ranges of suppliers in the current market place. For more information contact us at contact-

us@corsaire.com or visit our website at http://www.corsaire.com. 


